仿生设计沟通生物与新材料的桥梁

?科技的进步正带来材料的新革命,图片来自EurekAlert

撰文

谢歆雯、*立志、陈松月、侯旭(厦门大学)

● ● ●

自然界为新材料的研发带来了很多设计灵感,效仿仅仅是 步,仿生材料从实验阶段进入实际应用更为重要的一步是超越自然。

仿生这一思想早已出现并应用于人类的生产生活,例如骨针(模仿鱼刺)、锯子(模仿带齿草叶)、车轮(模仿蓬草的飞转状态)等。经过长期的演化和自然选择,生物系统通过优化其组织结构及界面性质等方法,最终进化出了能够响应外界刺激、适应环境变化的优异性能。现代化表征及制备合成技术的高速发展推动了人类对这些优异生物特性的深入认知,得益于此,自然宏观现象背后的微观作用机制为新材料的研发带来了更多的设计灵感。

仿生学在材料科学中的分支称为仿生材料学,仿生材料学受生物结构和功能的启发,通过研究生物体宏观、微观多尺度结构与其特性之间的相关性,设计合成具有该特性的物质和结构,最终得到具备特定功能的新材料。自然界的生物体给人类带来了无尽的设计灵感,其中包括了仿生材料领域的诸多研究热点,例如仿生定向输运材料、仿生超疏水材料、仿生高黏附材料、仿生轻质高强度材料、仿生智能薄膜材料等。

仿生定向输运材料

某些生物体,如仙人掌、蜘蛛、纳米布甲虫,可在干旱的环境中生存。研究发现,这些生物体具备从稀薄的空气中收集水的特殊本领,深入探究这些生物的集水方式,将为全球范围的缺水问题带来潜在的解决方案。

生活在墨西哥奇瓦瓦沙漠的一种*毛仙人掌,它的掌刺 长有取向倒钩,该结构确保液滴只能向 根部运动。仙人掌中部的梯度凹槽是一种不对称结构,该不对称结构产生的表面张力梯度使得液滴能够沿着掌刺运动到达 根部,而掌刺底部呈带状分布的绒毛能够很好地收集水分。模仿仙人掌掌刺微观结构的集水机制,可以获得更大的集水表面,从而使材料的集水能力大大提高。

人们在观察蜘蛛丝时发现蜘蛛丝本身是疏水的,蜘蛛丝表面周期性地分布有纺锤状结点。结点两侧拉普拉斯压力的不同会产生压力差,使得水滴不断在蜘蛛丝上聚集,并向结点移动。模仿蜘蛛丝的结构,用聚偏二氟 纺锤结制备的仿蜘蛛丝纤维材料,以纺锤结作为冷凝点和收集点,可以收集较大的水滴,并将其运送到指定位置,具有很强的集水能力。中国科学院江雷院士团队使用 人造纤维模仿蜘蛛丝结构,并通过改变纤维表面的粗糙度和曲率来调节纤维上毛细管的黏附性,进一步提高了仿蜘蛛丝纤维的集水能力。

非洲纳米布沙漠中有一种甲虫,其翅膀上有一种超亲水纹理和超疏水凹槽,可从风中吸取水蒸气。当亲水区的水珠越聚越多时,这些水珠就会沿着甲虫的弓形后背滚入其嘴中。受该甲虫的启发,人们构建了大量的亲水疏水图案化表面,以此实现集水功能的应用。

此外,近期对猪笼草的研究发现,猪笼草口缘区液体能够实现持续定向的运输,其口缘表面的多级沟槽结构能够加强并且优化这种定向的液体运输,并防止其回流。这就能让水像长着脚似的,在猪笼草的口缘区实现连续的多级输运。研究人员模拟了猪笼草口缘区的表面结构,使用压印成型法成功复制了猪笼草口缘区的作用机制。这种无外部动力的液体输运方式,对于开发设计新型定向流体输运系统具有很好的指导意义,在农业滴灌、无动力的微药物传输、自润滑防粘设计等众多领域具有广阔的应用前景。

仿生超疏水材料

目前,仿生超疏水自清洁表面被应用于社会生产的各个领域,包括太阳能、防雾抗冻、水油分离、自洁表面和智能设备等。

自然界给我们提供了诸多的学习榜样——荷叶、水稻叶、蝴蝶翅膀、水黾腿以及蚊子的复眼等,它们都具有特殊的表面润湿性。荷叶表面的结构使得水滴不仅不能稳定黏附在荷叶表面,而且会自发地反弹或滚落,水滴滚落的过程中会带走叶子或花瓣上的污垢颗粒,该属性称为“莲花效应”或“自洁效应”;水稻叶表面具有一维的、依次排列的莲花样微乳突,该结构能够产生超疏水性;蝴蝶翅膀具有定向黏附、超疏水自洁功能;水黾腿呈螺旋形状定向分布的微胶囊赋予它出色的超疏水性;蚊子的复眼具有超疏水、防雾和抗反射功能。

这些生物特定表面的超疏水特性引起了科学界的广泛







































北京白癜风 的医院
中药治疗白癜风



转载请注明地址:http://www.dianmana.com/dmpz/827.html
  • 上一篇文章:
  • 下一篇文章: